Variabili aleatorie
Le variabili aleatorie o variabili casuali sono grandezze che nel corso
di un esperimento possono assumere diversi valori imprevedibili a priori
in modo deterministico.
Ad esempio se lanciamo un dado non si può conoscere a priori il valore della
faccia che si presenterà, questo valore è una variabile aleatoria. Sono
variabili aleatorie:
● il numero di teste che si presentano
nel lancio di n monete.(variabile discreta)
● il numero di camion che ogni giorno attraversano
un punto di frontiera.(variabile discreta)
● il numero di giorni di pioggia in un anno.(variabile
discreta)
● la velocità di un mezzo.(variabile continua)
● la statura di una persona.(variabile continua)
● la temperatura di un forno.(variabile
continua)
Pur non conoscendo preventivamente che valore assumerà una variabile casuale in una data prova, possiamo dire di conoscere la stessa se si possono determinare tutti i possibili valori che essa può assumere e associare ad ogni valore la relativa probabilità.
Una variabile aleatoria viene indicata solitamente con una lettera maiuscola come X, Y etc.. mentre i valori assunti da essa con una lettera minuscola com x, y (etc..) ad ogni valore xi si fa corrispondere il valore pi della probabilità dell'evento al quale xi è associato.
Si definisce distribuzione di probabilità (o funzione di probabilità) di una variabile aleatoria X l'insieme dei valori xi e delle relative probabilità pi.
Vediamo di fare un esempio di costruzione di una distribuzione di probabilità.
Supponiamo di eseguire tre lanci successivi di una moneta e di voler rappresentare
la distribuzione di probabilità della variabile
X = numero di teste che si possono presentare
L'insieme universo U è costituito da 8 eventi : U={TTT, TTC, TCT, TCC, CTT, CTC, CCT, CCC}
come si vede, le cose da fare sono poche, bisogna solo determinare:
1 Quali valori può assumere la variabile.
2 Con quale probabilità può assumere tali valori.
vediamo un altro esempio: si lancia una sola volta una coppia di dadi, studiare la distribuzione di probabilità della variabile casuale
X= somma dei punti nel caso del lancio di due dadi,
le configurazioni possibili che si possono formare ogni volta sono le disposizioni con ripetizione di 6 elementi in classe 2 cioè
e si avranno le seguenti eventualità:
di conseguenza, la distribuzione di probabilità risulterà essere la seguente,
come si vede, anche in questo caso è facile ottenere la distribuzione di probabilità.
La distribuzione di probabilità di una variabile casuale può anche avere
una rappresentazione molto uniforme e questo dipende dall'evento che stiamo
studiando.
Ad esempio, si lancia un dado una volta e si vuole studiare la variabile
aleatoria
X= punteggio che si può presentare
Quando si lancia un dado, tutte e 6 le facce hanno la stessa probabilità di presentarsi che è 1/6.
Funzione di ripartizione
Quando si cerca di estendere la nozione di distribuzione di probabilità a variabili casuale che possono assumere infiniti valori discreti o continui, diventa complicato assegnare le probabilità a questi infiniti valori. Tenendo conto che, comunque, la somma delle probabilità è sempre uguale a 1, diventa vantaggioso fare uso di un nuovo tipo di rappresentazione grafica: la funzione di ripartizione.
La funzione di ripartizione F(X) di una variabile aleatoria esprime per ogni valore della xi la probabilità che la variabile aleatoria assuma un valore minore o uguale a xi .
se per semplicità possimo riferirci all'ultimo esempio fatto sulla distribuzione di probabilità della variabile casuale rappresentativa la faccia che si presenta dopo il lancio di un dado, dove avremo il grafico seguente:
La funzione di ripartizione è dunque una diretta conseguenza della distribuzione di probabilità.
Supponiamo di studiare la variabile aleatoria
X= numero di teste in 4 lanci di una moneta,
in questo caso, trattandosi di prove ripetute, per determinare la probabilità possiamo usare la l'algoritmo di Bernoulli (della distribuzione binomiale) con legge
con p=q=1/2 e con 0 ≤ k ≤ 4 = n
si costruisce la seguente tabella
e si ottiene la funzione di ripartizione
Supponiamo, adesso, di studiare la variabile casuale
X=numero di carte di quadri uscite da un mazzo da 40 nel corso di 2 estrazioni senza reimmissione
Questo caso è concettualmente diverso dal precedente perchè le prove ripetute
non sono indipendenti tra loro.
Useremo, allora, le formule della distribuzione
ipergeometrica .
con
N=40=popolazione totale
k=10=numero di elementi della popolazione con la caratteristica indicata
n=2=numero di elementi estratti in blocco (o successivamente senza reimmissione)
x=numero degli elementi rilevati dopo la prova aventi la caratteristica
indicata.
tenendo conto che
la probalità che non esca nessuna carta di quadri su due estrazioni successive senza reimmissione
la probalità che esca solo una carta di quadri su due estrazioni successive senza reimmissione è
la probalità che escano due carte di quadri su due estrazioni successive senza reimmissione è
la funzione di ripartizione si può ottenere nel solito modo