Induttore
Un induttore, detto anche induttanza è un dispositivo utilizzato per generare un campo magnetico. in una regione dello spazio.
Un induttore può essere realizzato tramite un semplice solenoide, costituito da materiale conduttore percorso da corrente elettrica. Un solenoide è un insieme di più spire contigue (adiacenti) avvolte tutte nello stesso verso secondo una geometria cilindrica. Se la lunghezza del solenoide è minore di 10 volte il raggio delle spire si parla comunemente di bobina.
Se una corrente i circola attraverso ciascuna delle N spire di una induttanza, un flusso magnetico φ concatenerà queste spire.
Come grandezza fisica, l'induttanza L di un induttore viene definita come:
Henry
dove N è il numero delle spire, i è la corrente circolante e φ
è il flusso concatenato.
Nel caso specifico di un solenoide o bobina, questa formula può essere rimaneggiata
nel seguente modo:
con vettore di induzione magnetica. Si ha
con μo=4π·10-7
[H/m] =1,257·10-6 [H/m] permeabilità magnetica del vuoto ed l lunghezza longitudinale della bobina.
Se all'interno dell'induttore è presente un materiale ferromagnetico con
permeabilità magnetica relativa μr , allora μo
deve essere moltiplicato per μr.
Autoinduzione
Se in una bobina varia l'intensità della corrente si genera una forza elettromotrice
indotta (f.e.m.) che chiamiamo ΔV.
Questo fenomeno viene chiamato autoinduzione ed è subordinato alla legge
di induzione di Faraday.
Sapendo che mentre la legge di Faraday per una spira afferma che
con N spire si ha
per il solenoide o una bobina
questa f.e.m. sarà presente in qualsiasi induttanza ogni volta che la corrente varia nel tempo.
Il verso di ΔV, che per semplicità possiamo anche chiamare VL è dato dalla legge di Lenz: la f.e.m. agisce contrastando la variazione che la provoca .
Infatti, variando la corente, il flusso magnetico cambia. Se la corrente aumenta, si genera una tensione indotta VL sulla bobina in direzione tale da contrastare questo aumento. Se la corrente diminuisce la tensione indotta si genera in direzione tale da contrastare questa diminuzione.
Energia immagazzinata in una induttanza
Per ricavare il valore dell'energia ricavata nel campo magnetico di una induttanza osserviamo il seguente circuito:
dove per la legge di Kirchoff alle maglie si ha
equazione differenziale che descrive l'andamento nel tempo della corrente
nel circuito.
Moltiplicando entrambi i membri per i:
Il termine
(Watt)
rappresenta, dunque, la potenza (energia nell'unità di tempo) sviluppata
sull'induttore.
Moltiplicando per dt entrambi i membri dell'uguaglianza
tenendo conto che Li=Nφ si ha
Per indicare l'energia immagazzinata nell'induttore possiamo indifferentemente usare la formula
oppure
Induttanze in serie
La tensione elettrica è direttamente proporzionale all'induttanza L tramite la relazione
poiché le tensioni per gli elementi in serie si sommano (V1+V2) allora le induttanze in serie devono sommarsi (Leq=L1+L2) proprio come avviene per le resistenze.
Per garantire l'indipendenza dei valori di tensione è importante che gli induttori non siano troppo vicini tra loro. Il requisito fondamentale è che la linea del campo magnetico proveniente da un induttore non debba avere influenza su nessun altro induttore nelle vicinanze; dunque per n induttanze in serie si ha:
Induttanze in parallelo
Abbiamo visto come la formula della tensione ai capi di un induttore sia direttamente proporzionale all'induttanza L, in completa analogia alla formula della tensione ai capi di una resistenza: VR=R·i.
dove c'è proporzionalità diretta tra tensione e resistenza.
Ora, abbiamo visto nei circuiti puramente resistivi che tensioni indipendenti per elementi paralleli sono uguali (V1=V2) mentre le correnti (che sono generalmente funzione del tempo) sommano i1(t)+i2(t)=i(t).
Questo porta a scrivere per le resistenze
mentre per le induttanze si ha
essendo si ha
in particolare per due induttanze in parallelo si ha
in generale per n induttanze in parallelo si ha